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The small grains in a bidisperse porous medium have the greater influence on
the permeability, while the large grains are more effective in dispersing chemical
tracers. We compute the dispersion induced by a dilute array of large spheres in
a Brinkman medium whose permeability is determined by the radii and volume
fraction of the small spheres. The effective diffusivity contains a purely hydrodynamic
contribution proportional to Ua1φ1 and an O(Ua1φ1 ln (Ua1/D)) contribution from
the mass transfer boundary layers near the spheres. Here, U is the mean velocity in
the medium, a1 and φ1 are the radii and volume fraction of the large spheres and D is
the molecular diffusivity. The boundary-layer dispersion is small when the Brinkman
screening length κ (or square root of permeability) is much smaller than a1, but is
important for κ > O(a1). Experimental results for the dispersion due to flow through
a bidisperse packed bed are reported and compared with the theoretical predictions.
In addition to its application to bidisperse porous media, the present calculation
allows an extension of Koch & Brady’s (1985) analysis of monodisperse fixed beds to
include higher-order terms in the expansion for small particle volume fraction.

1. Introduction
The dispersion of heat and mass plays an important role in a variety of appli-

cations including the transport of pollutants in aquifers, extraction of geothermal
energy, interseasonal storage of heat, secondary oil recovery, transport of fertilizers,
mechanisms for the alteration of certain types of geological formations and the design
of packed-bed reactors. When the Péclet number Pe = Ua1/D is much larger than
one, the effective diffusivity produced by a mean fluid velocity U through a porous
medium with a characteristic length scale a1 is much larger than the molecular
diffusivity D. The simple assumption that the dispersion is purely mechanical and in-
dependent of the molecular diffusivity leads to an effective diffusivity proportional to
Ua1. However, Saffman (1959) and Koch & Brady (1985) showed that a contribution
to the effective diffusivity that is proportional to Ua1 ln (Pe) results from tracers that
come close to no-slip solid boundaries in the medium; these tracers could not escape
the slow-moving region near the boundary without the aid of molecular diffusion.

Porous media are often modelled as either an array of pores (Salles et al. 1993;
Koplik, Redner & Wilkinson 1988; Sahimi & Imdakm 1988) in a continuous solid
matrix or as an array of fixed spherical particles or grains in a continuous fluid phase
(Brenner 1980; Eidsath et al. 1983; Koch & Brady 1985). While the former model
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more closely approximates many consolidated porous rocks, the latter is appropriate
for sandy soils and packed-bed reactors. The modelling of dispersion in pore networks
requires an arbitrary assumption that the fluid in the nodes between pores is well
mixed whereas no such assumption is required for the fixed-bed model.

Koch & Brady (1985) derived the effective diffusivity in a dilute, monodisperse fixed
bed of spherical particles. The effect of the surrounding particles on the conditionally
averaged velocity caused by a test particle was modelled in terms of a body force in
Brinkman’s momentum equation with a permeability κ2 = (2/9)a2

1/φ1. In the dilute
limit with the volume fraction φ1 � 1, the Brinkman screening length κ� a1. Since
the leading contribution to the dispersion came form O(κ) radial separations from the
test particle, Koch & Brady exploited the point-particle approximation for the fluid
velocity disturbance induced by the particle. This led to a mechanical contribution
(27/8)Uφ1κ

2/a1 = (3/4)Ua1 to the effective diffusivity. Koch & Brady noted that
the dispersion was not entirely independent of molecular diffusivity. The no-slip
boundary condition on the solid sphere leads to a contribution (π2/6)Ua1φ1 ln (Pe)
to the effective diffusivity that arises from the mass transfer boundary layer of
thickness δ = O(a1Pe−1/3) near the particle surface. This leading-order boundary-
layer contribution was determined by scaling the mass conservation equation in the
boundary layer and without obtaining a full solution to the boundary-layer equations.

Terms of order Ua1φ
1/2
1 and Ua1φ1 neglected in Koch & Brady’s analysis can only

be determined from a complete solution of the conditionally averaged concentration
field surrounding a finite radius particle. Such a solution is undertaken in this paper.

In addition to the dispersion caused by individual grains, field-scale measure-
ments in heterogeneous porous media are typically influenced by spatial variations in
permeability and by macroscopic impermeable inclusions. A number of researchers
including Smith & Schwartz (1980), Koch & Brady (1988), and Lenormand & Wang
(1995) have investigated the dispersion resulting from macroscopic variations in per-
meability. Moutsopoulos & Bories (1993) studied dispersion in a medium consisting
of a porous matrix satisfying Darcy’s equations of motion with impermeable spher-
ical inclusions. These inclusions could represent small soil cores of gravel or larger
scale impermeable regions such as clay lenses. These types of geological formations
often occur in aquifers near rivers and influence the dispersion of pollutants as the
river water infiltrates the aquifer. In the present study, we assume that the inclusions
are not only impermeable to the flow but impenetrable by the solute. However, this
assumption could be relaxed by incorporating a description of the diffusion and mass
transfer within the inclusions (see, for example, Koch & Brady 1985).

This paper addresses the dispersion occurring in a bidisperse fixed bed consisting
of two species of spheres with volume fractions φ1 and φ2 and radii a1 and a2

with a1 > a2. This could model a medium consisting of grains of differing sizes.
Alternatively, the large spheres could represent large-scale impermeable regions as
suggested by Moutsopoulos & Bories (1993). The permeability of the medium is
usually controlled primarily by the smaller particles. For example, when φ1 � 1, the
overall permeability of the bidisperse medium is k = k2(1 − 3φ1/2), where k2 is the
permeability of a monodisperse medium of small particles with radius a2 and volume
fraction φ2/(1− φ1). On the other hand, large grains lead to larger displacements of
tracers and usually cause more dispersion. Thus, we will consider a model of bidisperse
porous media in which the small particles give rise to a porous matrix described by
Brinkman’s equations of motion and the hydrodynamic dispersion is enhanced by the
fluid flow around the large obstacles of radius a1 embedded in this medium. The use
of Brinkman’s equations to describe the conditionally averaged velocity field around
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a large inclusion allows us to capture the boundary-layer dispersion that arises near
the no-slip solid boundary to the large sphere; this effect would be missed if one used
Darcy’s equations of motion.

In § 2, we consider media with moderate to small permeabilities κ 6 O(a1) where

κ = k
1/2
2 is the Brinkman screening length. We assume a2 � a1 so that the small

particles only serve to produce a Brinkman medium with a permeability k2 in which
the dilute array (φ1 � 1) of larger particles are imbedded. The ensemble-averaged
equations are introduced in § 2.1 and the hydrodynamic and boundary-layer dispersion
are computed in § § 2.2 and 2.3, respectively. The use of Brinkman’s equations to
describe the conditional-average velocity around a large sphere can be justified
rigorously when φ2 � 1. This limit is compatible with moderate permeabilities

κ ∼ O(a1) provided that a2/a1 = O(φ
1/2
2 ) � 1. In § 3, we consider highly permeable

arrays κ� a1 with no restriction on the size ratio a1/a2. In the case φ2 = 0, the results
of § 3 provide a higher-order approximation for the dispersion in a monodisperse
dilute array that improves upon the theory of Koch & Brady (1985). Experimental
measurements of dispersion in bidisperse packed beds are presented and compared
with the theoretical predictions in § 4. This comparison indicates that the qualitative
predictions of enhanced dispersion due to the incorporation of large spheres into a
packed bed of small spheres are valid even in concentrated packed beds, φ2 ∼ O(1).

2. Theory for moderate permeabilities κ 6 O(a1)

2.1. Governing equations

In this section, we consider a model of a bidisperse porous medium in which it is
assumed that the small grains only affect the medium by contributing a permeability
k2. Thus, the medium consists of a dilute array of impermeable spherical inclusions
of volume fraction φ1 and radii a1 embedded in a medium described by Brinkman’s
(1947) equations of motion:

∇ · u = 0, (1)

−µ∇2u+ ∇p+
µ

k2

u = 0, (2)

where µ is the fluid viscosity and p the fluid pressure. Brinkman’s equations can be
derived by ensemble averaging the equations of motion over all possible configurations
of the small (species 2) particles leading to equations of the form (1) and (2) in the
limit φ2 � 1 (Hinch 1977). Here, u is the mean velocity in the Brinkman medium
ensemble averaged over the possible configurations of the small particles compatible
with a given large particle structure. The fluid velocity satisfies a no-slip boundary
condition u = 0 at the surfaces of the large particles and the mean value 〈u〉 = U is
independent of position and time. The angle brackets indicate an ensemble average
over all possible configurations of the large spheres.

In the dilute limit φ1(κ/a1)
3 � 1, most of the particles of species 2 will be separated

from all 1-particles by a sufficient distance r (where r � κ) so that they are unaffected
by the larger particles. Thus, the dispersion caused by the particles of species 2 can be
obtained from monodisperse dispersion theory (Koch & Brady 1985); this dispersion
will be O(Ua2) for both φ2 = O(1) and φ2 � 1. We will focus attention on the
O(Ua1φ1) dispersion that arises due to the large particles. The large particles make
the dominant contribution to the effective diffusivity provided that the size ratio is
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sufficiently large a1/a2 � 1/φ1. This condition is compatible with any value of κ/a1

because κ may be adjusted by varying φ2.
The conservation equation for the tracer is

∂c

∂t
+ ∇ · (vc)− D∇2c = 0. (3)

Here, c is the concentration of the tracer ensemble averaged over the configurations
of small particles. The particles are impermeable to the tracer so the tracer velocity
v = u/(1− φ2) is larger than the mean velocity u of the medium. The third term on
the left-hand side of (3) represents the dispersion of the tracer. We are interested in
the dispersion that occurs at high Péclet numbers, Pe = Ua1/D � 1, and in this limit
molecular diffusion is small compared with convection in the bulk of the medium.
Furthermore, we are interested in situations in which the length scale of the flow,
which is l = max[a1, κ], is much larger than the radii of the small spheres a2. Since
the effective diffusivity due to the small spheres is Deff = O(Ua2), a Péclet number,
Peeff = Ua1/Deff = O(l/a2) is also large and the hydrodynamic dispersion caused
by the small spheres is small compared with convection. The diffusion term in (3) is
only important in a thin boundary layer near the surface of the large spheres where
the convective velocity approaches zero. Koch (1966) showed that the hydrodynamic
diffusion becomes small and molecular diffusion dominates within this boundary
layer. Therefore, we have incorporated only the molecular diffusivity D in equation
(3). The applicability of this approximation will be discussed further at the end of
§ 2.3.

It will be assumed that the tracer cannot penetrate the spheres so that the concen-
tration field satisfies a no-flux boundary condition n · ∇c = 0 at the surfaces of the
large particles. Adsorption or absorption within the spheres could be incorporated
into the model and would lead to an additional mechanism of dispersion as discussed
by Koch & Brady (1985).

Taking the ensemble average of (3) and assuming that the Péclet number Pe =
Ua1/D is very large (so that the molecular diffusion term in (3) is small) leads to an
equation for the average concentration field:

∂〈c〉
∂t

+W · ∇〈c〉 − ∇ · (D∗ · ∇〈c〉) = 0, (4)

where

W = U/(1− φ1 − φ2) (5)

is the average velocity of the fluid and therefore also the averge velocity of the fluid
phase tracer and D∗ is the effective diffusivity, which is given by

−D∗ · ∇〈c〉 = 〈v′c′〉 = n

∫
dx1〈v′c′〉1 ≈ n

∫
dx1〈v′〉1(x|x1)〈c′〉1(x|x1). (6)

Here, 〈 〉1 is the conditional ensemble average with the position of one particle
centre held fixed at x1, v

′ = v − w, and c′ = c − 〈c〉. For k
1/2
2 ≡ κ2 = O(a1), the

relative errors incurred in the final approximation in (6) are O(φ1); they grow to
O(φ

1/2
1 ) when κ2 > O(aφ

−1/2
1 ). In many studies of tracers that do not permeate the

particles (for example, Fried & Combarnous 1971), the dispersion equation is written
for the concentration field 〈c〉f averaged over the fluid phase; this is related to 〈c〉
(the average over both fluid and particle phases) by 〈c〉f = 〈c〉/(1− φ1 − φ2) and an
equation for 〈c〉f in a homogeneous medium can be obtained by multiplying (4) by
1/(1− φ1 − φ2).
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The local diffusive approximation to the flux assumed in (6) is valid provided that
the mean concentration gradient varies sufficiently slowly in space and time. Koch &
Brady (1988) have introduced a non-local description of dispersion in the presence of
rapidly varying concentration gradients. In the present paper, we will consider only
local diffusion and, for covenience, we treat ∇〈c〉 as a constant. A solution to (4) that
corresponds to a constant mean concentration gradient throughout an unbounded
porous medium is

〈c〉 = (x−W t) · ∇〈c〉+ c0, (7)

where c0 is a constant. The dispersion tensor in an isotropic porous medium will take
the form

D∗ = D∗Lezez + D∗T (I − ezez), (8)

where D∗L and D∗T are the longitudinal and transverse dispersivities and z is the
coordinate measured parallel to the direction of the mean flow.

Taking the conditional ensemble average of the mass conservation equation and
subtracting the bulk average equation (4) gives

∂〈c′〉1
∂t

+ ∇ · [〈(v − 〈v〉f1)(c− 〈c〉1)〉1 − 〈v′c′〉] + 〈v′〉f1 · ∇〈c′〉1
−D∇2〈c′〉1 = −〈v′〉f1 · ∇〈c〉. (9)

In this section, we will neglect the term ∇ · [〈(v − 〈v〉f1)(c − 〈c〉1)〉1 − 〈v′c′〉], which
describes the effects of interactions among the large spheres and is O(φ1) smaller than
the terms retained.

In order to determine the conditionally averaged concentration from (9) and the
effective diffusivity from (6), we require an equation for the conditionally averaged
fluid velocity in the region surrounding the test sphere. This is obtained by ensemble
averaging (1) and (2) to obtain

−µ∇2〈u〉1 + ∇〈p〉1 +
µ

k2

〈u〉1 =

∫
|x2−x|=a

dx2P (x2|x1) n · 〈T 〉2(x|x1, x2), (10)

∇ · 〈u〉1 = 0, (11)

where 〈T 〉2 is the stress tensor conditionally averaged with two particle positions
held fixed, n is the unit normal to the second sphere, and P (x2|x1) is the conditional
average probability density for finding a particle centred at x2 given that the test
sphere is centred at x1. The integral on the right-hand side of (10) represents the
force per unit volume that other particles of species 1 exert on the fluid surrounding
the test particle. This body force is small in a dilute array (φ1 � 1) and it may be
neglected whenever κ2 = O(a1). When κ2 � a1, this body force can be approximated
as 6πµa1n1〈u〉1 where n1 = φ1/(4πa

3
1/3) is the number density of species 1. Thus, (10)

may in general be approximated as

−µ∇2〈u〉1 + ∇〈p〉1 +
µ

k
〈u〉1 = 0, (12)

where the permeability is approximately that due to species 2 if (as in the present
section) the array is moderately permeable,

k = k2 for k
1/2
2 � a1φ

−1/2
1 , (13)
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and is given by

k−1 = k−1
2 +

9

2

φ1

a2
1

for k2 � a2
1 and φ1 � 1 (14)

in a highly permeable dilute array. Since the second term in (14) becomes important
only when the medium of species 2 spheres has a very high permeability k2 � a2

1, (14)
provides a uniformly valid approximation for the permeability.

The solution of (11) and (12) for the conditional-average fluid velocity field outside
a fixed sphere is

〈u〉1 = U

(
1 +

(
1 +

3κ

a1

+
3κ2

a2
1

)
a3

1

2r3
− 3

2

(
a1

r
+
κa1

r2
+
κ2a1

r3

)
exp

(
− r − a1

κ

))
−U · rr

r2

((
1 +

3κ

a1

+
3κ2

a2
1

)
3a3

1

2r3
− 3

2

(
a1

r
+

3a1κ

r2
+

3a1κ
2

r3

)
exp

(
− r − a1

κ

))
,

(15)

where r = x − x1 and κ = k1/2 is the Brinkman screening length. The conditional-
average velocity of the tracer in the fluid phase may be obtained using 〈v〉f1 ≈〈u〉1/(1 − φ1 − φ2); this relationship has O(φ1) errors for r < 2a1 and is exact for
r > 2a1.

An important feature of the forthcoming analysis will be the application of
Brinkman’s averaged equations of motion (11) and (12) and their solution for flow
past a sphere (15) at all positions surrounding a fixed large sphere with no-slip bound-
ary conditions. When these equations are derived by volume averaging (Bear 1978;
Aifantis 1980), their applicability to separations from the large sphere that are smaller
than the typical interparticle spacing of the small particles is unclear. However, the
ensemble-averaging derivation demonstrates that Brinkman’s equations apply at all
separations in a medium that is dilute in both particle species (Hinch 1977; Koch
1996). In general, the permeability may vary in the vicinity of a solid boundary to the
medium (such as the surface of a large sphere) as a result of exclusion of particles
by the impenetrable wall and hydrodynamic reflections between the particle and the
wall; however, the effect of these phenomena on the conditional-average velocity is
asymptotically small when φ2 � 1 (Koch 1996). Furthermore, the ensemble-average
approach makes it clear that the appropriate boundary condition for the conditional-
average velocity at the surface of the fixed particles is a no-slip boundary condition;
this results simply from the fact that the velocity is zero for each member of the
sub-ensemble in which the point of interest is on the surface of the fixed particle.

Numerical simulations (Durlofsky & Brady 1987) indicate that Brinkman’s equa-
tions accurately describe the conditional ensemble-average velocity field with one
particle position specified in a dilute fixed bed. In more concentrated fixed beds, the
predictions of Brinkman’s equations for the detailed velocity profile are inaccurate.
However, predictions based on Brinkman’s equation for averaged properties such as
the drag on a particle (Koch & Ladd 1997), the overall dispersion (Koch & Brady
1985) and the slip velocity at the boundary between a porous medium and a pure fluid
region (Sangani & Behl 1989) are still reasonably good. More sophisticated models of
flow near the boundary of a porous medium that include variations in permeability
and viscosity and/or terms involving higher-order derivatives of the velocity field
have been proposed (see, for example, Acrivos & Chang 1986; Muthukumar & Freed
1979). Predictions for the dispersion resulting from these models could be obtained
using the same general procedure as outlined below for the Brinkman equation.
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2.2. Hydrodynamic diffusion

It is observed that the effective diffusivities of non-adsorbing tracers in porous
media at high Péclet numbers are nearly independent of the molecular diffusivity.
An apparent dispersion that is independent of molecular diffusion is referred to as
hydrodynamic diffusion. The fore–aft symmetry of the streamlines for Brinkman flow
past a sphere imply that there will be no net displacement of a tracer perpendicular to
the direction of the mean flow. As a consequence, we will obtain a contribution only
to the longitudinal component of the diffusion tensor. This longitudinal diffusivity
can be computed by considering an average concentration gradient that is parallel
to the flow direction. To look for a hydrodynamic diffusivity, we drop the molecular
diffusion term in the equation (9) for the conditionally averaged concentration field
and integrate this equation along a streamline to obtain

〈c′〉1 = −
∫ η

−∞
dη′
〈v′〉f1 · ∇〈c〉
hη|〈v〉f1 |

. (16)

Here, Φ is the meridional angle, Ψ is the stream function, η is a third orthogonal
coordinate that measures distance along a given streamline, and hη is the associated
metric coefficient. Substituting (16) into (6), the longitudinal dispersion coefficient is
given by

D∗L = n

∫
dr〈v′z〉f1(Ψ, η, Φ)

∫ η

−∞
dη′
〈v′z〉f1
hη|〈v〉f1 |

. (17)

Koch & Brady (1985) simplified (17) by considering a highly permeable array. In
this case, the largest contributions to the volume integral came from large separation
distances r ∼ O(κ) � a1 and it was thereby possible to use a point-particle approx-
imation for the velocity field (15) and approximate the streamlines as straight lines
in the z-direction. Moutsopoulos & Bories (1993) considered the opposite limit of a
medium with a very small Brinkman screening length. They derived Ψ and η for the
solution to Darcy’s equations of motion. For the present case, κ ∼ O(a1), we require
the stream function corresponding to the Brinkman velocity field (15); this is given
by

Ψ = 1
2
U sin2 θ

[
r2 − (a3

1 + 3κa2
1 + 3κ2a1

) 1

r
+ 3

(
κa1 +

κ2a1

r

)
exp

(
− r − a1

κ

)]
,

(18)
where r and θ are the radial coordinate and azimuthal angle in a spherical coordinate
system whose origin is the centre of the sphere and whose axis is parallel to U .
Differentiating (18) to obtain a differential equation for r(θ) along the streamline,
using geometry to derive the differential equation for θ(r) along a line perpendicular
to the streamlines and integrating yields the following expression for the orthogonal
coordinate:

η = U cos θ exp

(∫
H(r′) dr′

)
, (19)

where

H(r) =
2

r

(
r3 − (a3

1 + 3κa2
1 + 3κ2a1) + 3(κra1 + κ2a1) exp[−(r − a1)/κ]

2r3 + (a3
1 + 3κa2

1 + 3κ2a1)− 3(r2a1 + κra1 + κ2a1) exp[−(r − a1)/κ]

)
.

(20)
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In the limit κ� a1, (19) reduces to the classical result for the potential lines for Darcy
flow or flow of a perfect fluid, i.e. η = U cos θ[r + (a3

1/2r
2)]. The metric coefficient is

hη =

(
H2 cos2 θ +

1

r2
sin2 θ

)1/2

U exp

(∫
H(r′) dr′

)
. (21)

To compute the longitudinal diffusivity (17), it is most convenient to express the
volume integral in terms of the streamline coordinates (Ψ, η, Φ). The integral over Φ
can be performed analytically owing to the axisymmetry yielding

D∗L,H = φ1Wa1J, (22)

where

J =
3

2Ua3
1

∫ ∞
−∞

dη

∫ ∞
Ψ0(η)

dΨ r2 sin θ

∣∣∣∣D(Ψ, η)

D(r, θ)

∣∣∣∣−1

〈u′z〉1(η,Ψ )

∫ η

−∞
dη′
〈u′z〉1
hη|〈u〉1| . (23)

The Jacobian in (23) may be computed analytically using (18) and (19), but the
resulting expression is long and is omitted for brevity. It is most convenient to express
the fluid velocity, the Jacobian and the metric coefficient in terms of the spherical
coordinates (r, θ). Thus, to perform the integration in (23) we must obtain the values
of r and θ corresponding to a specified point in streamline coordinates (Ψ, η). This
was accomplished by combining (18) and (19) to eliminate θ. The resulting nonlinear
algebraic equation for r was solved using Newton–Raphson or bisection iterations.
The integrals in (23) were performed using the finite element method with grid
spacings chosen to achieve a relative error of less than 0.1%.

The tracer dispersion arises from the entire region of fluid surrounding the fixed
particle. However, an attempt to perform the integral in (23) over all values of the
stream function Ψ from 0 (corresponding to the particle surface) to ∞ (far from the
particle) would lead to a logarithmic divergence. The magnitude of the velocity goes
to zero at the no-slip solid boundary to the particle and tracer molecules that come
close to the particle therefore spend a long time near the surface. This leads to a
large contribution to the overall dispersion. Koch & Brady (1985) referred to this
phenomenon as boundary-layer dispersion and pointed out that molecular diffusion
must play a role in allowing tracer molecules to escape the slow-moving fluid near
the particle surface. We have neglected molecular diffusion in the analysis leading to
(23) and so we have placed a lower limit of integration Ψ0(η), which corresponds
to a radial distance of y = r − a1 = ζa1 from the particle surface. The dispersion
arising due to the fluid closer to the particle will be treated in the following subsection
through the analysis for boundary-layer dispersion that incorporates the effects of
molecular diffusion. The precise value of the radial distance at which we make
the transition from the present hydrodynamic diffusion analysis to the subsequent
boundary-layer dispersion analysis is unimportant as long as a1ζ is large compared
with the boundary-layer thickness δ and small compared with a1. Both analyses are
valid in the regime δ � y � a1. In practice we used ζ = 0.05 for κ/a1 > 1 and
ζ = 0.05(κ/a1) for κ/a1 6 1.

Results for the longitudinal hydrodynamic diffusivity scaled by Wa1φ1 are plotted
as a function of κ/a1 in figures 1 and 2. The scaled dispersivity approaches 0.188,
the value obtained for Darcy flow by Moutsopoulous & Bories (1993) as κ/a1 → 0.
The dispersivity approaches Koch & Brady’s (1985) result (27/8) (κ/a1)

2 (dashed line)
for a highly permeable array as κ/a1 → ∞. However, we note that the approach to
this dilute fixed-bed asymptote is rather slow. An improved asymptotic expression for
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Figure 1. The hydrodynamic diffusivity scaled by Wa1φ1 is plotted as a function of the ratio of
the Brinkman screening length to the sphere radius for relatively impermeable media.
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Figure 2. The hydrodynamic diffusivity scaled by Wa1φ1 (circles) is plotted as a function of the
ratio of the Brinkman screening length to the sphere radius for more permeable media. The dashed
line is the asymptotic result for κ� a1 obtained by Koch & Brady (1985) and the solid line is the
improved asymptote given by equations (44) and (45).



368 K. N. Moutsopoulos and D. L. Koch

highly permeable arrays (27/8)(κ/a1)
2 + 10.34(κ/a1) derived in § 3 (equations (44) and

(45)) is plotted as the solid line.

2.3. Boundary-layer dispersion

The molecular diffusion of the chemical tracer must be included in a description of
the dispersion arising from regions close to the particle surface. However, the solution
(15) for the fluid velocity can be simplified for y = r − a1 � min(a1, κ) to take the
form

〈uθ〉1 = −3Uy

2α
sin θ, (24)

〈ur〉1 =
3Uy2

2a1α
cos θ. (25)

Here, ur and uθ are the r- and θ-components of the fluid velocity in spherical
coordinates and α−1 = a−1

1 + κ−1. Substituting (24) and (25) into the equation (9) for
the conditional-average velocity and using (5), we obtain at steady state

−3Wy

2αa1

sin θ
∂〈c′〉1
∂θ

+
3Wy2

2αa1

cos θ
∂〈c′〉1
∂y

−D
∂2〈c′〉1
∂y2

−D
1

a2
1 sin θ

∂

∂θ

(
sin θ

∂〈c′〉1
∂θ

)
= W |∇〈c〉|. (26)

Scaling the radial coordinate Y = y/δ with the boundary-layer thickness δ = a1Pe
−1/3
f

and neglecting the small angular diffusion term gives

− 3
2
Y sin θ

∂〈c′〉1
∂θ

+ 3
2
Y 2 cos θ

∂〈c′〉1
∂Y

− ∂2〈c′〉1
∂Y 2

=
a1α

δ
|∇〈c〉|, (27)

where Pef = Wa2
1/(Dα). The effect of decreasing the permeability is to increase the

velocity gradient near the surface of the particle and thereby decrease the boundary-
layer thickness δ. Since the near-surface expansion (24) and (25) of the velocity field
is only valid when δ � κ, the boundary-layer description applies when Pe � a2

1α/κ
3,

a constraint that becomes more stringent with decreasing permeability. Nonethe-
less, boundary-layer dispersion will occur at sufficiently high Péclet numbers in any
medium. Fortunately, a single scaled partial differential equation (27) can be used
to describe the concentration field in the boundary layer for any permeability. The
solution of (27) can be expressed as

〈c′〉1 = S
a1α

δ
|∇〈c〉|, (28)

where S is the solution of (27) with the right-hand side replaced by 1 subject to the
boundary condition S = 0 at θ = π. The solution for S as Y → ∞ can be obtained
by neglecting the molecular diffusion term in (27) and solving using the method of
characteristics; this yields

S =
2(π− θ)

3Y sin θ
for Y � 1. (29)

For Y = O(1), (27) must be solved numerically subject to the boundary conditions
∂S/∂θ = 0 at θ = π, ∂S/∂Y = 0 at Y = 0, and S is required to equal the asymptote
(29) at Y = Y∞ . The numerical solution was accomplished using the finite control
volume method (Patankar 1980) with a piecewise linear radial profile for the diffusive
terms and the radial convective term and an upwind difference scheme in the angular
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Figure 3. The longitudinal diffusivity including both hydrodynamic and boundary-layer dispersion
is plotted as a function of permeability, κ/a1, for three values of the Péclet number based on the
large-sphere radius, Pe1 = Wa1/D = 102 (circles), 104 (squares), and 106 (diamonds).

direction. This yields a set of linear algebraic equations for the concentration at a
given angular position when the concentrations at previous values of θ are known;
these equations were solved by the tridiagonal-matrix algorithm.

The boundary-layer contribution to the effective diffusivity is obtained by substi-
tuting 〈v′〉1 ≈ −W and the solution (28) for the concentration field into (6) and
integrating over the boundary-layer region y < ζa1 or equivalently Y < Ym = ζa1/δ.
We obtain

D∗L,BL = π2αφ1W ( 1
6

ln (Pef) + 1
2

ln ζ + A), (30)

where ζ = 0.05 for κ/a1 > 1, ζ = 0.05κ/a1 for κ/a1 6 1, and

A = − 1
2

lnY∞ +
3

2π2

∫ Y∞

0

dY

∫ π

0

sin θ dθS = 0.482. (31)

Performing the integral in (31) with Y∞ = 18 gives A = 0.482; it was determined
that this value of Y∞ was large enough that the overall value of the boundary-layer
dispersion contribution was independent of Y∞.

The boundary-layer dispersion contribution (30) must be added to the hydrody-
namic diffusion (22) occurring in the region Y > ζa1 to obtain the complete solution
for the longitudinal diffusivity for an array of spheres in a Brinkman medium. The
relative importance of boundary-layer and hydrodynamic dispersion over a range of
values of the ratio of screening length to large particle radius can be seen in figure 3 by
comparing the longitudinal diffusivities scaled with Wa1φ1 for three different Péclet
numbers. The hydrodynamic diffusion yields a contribution to DL/(Wa1φ1) that is
independent of the Péclet number, while the boundary-layer contribution grows log-
arithmically with Pe. Therefore, the importance of boundary-layer dispersion can be
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judged by noting the spread in the values of DL/(Wa1φ1) for different Péclet numbers.
When the permeability is small, the velocity gradients near the surface of the sphere
are large and the boundary layer is thin. Thus, boundary-layer dispersion is small in
this limit and this justifies its neglect in the analysis of the Darcy flow problem by
Moutsopoulos & Bories (1993). When the Brinkman screening length is comparable
with the radius of the large particles, boundary-layer dispersion makes a significant
contribution to the overall dispersion. As the permeability is increased further, the
contribution to the overall diffusion due to the boundary layer near each sphere
reaches a finite asymptote, while the hydrodynamic dispersion per particle grows like
(κ/a1)

2. Thus, hydrodynamic dispersion dominates in the limit of large permeability.
In the foregoing analysis of boundary-layer dispersion, we neglected the hydrody-

namic diffusivity produced by the small spheres compared with molecular diffusion.
This may seem surprising at first since we are interested in high Péclet numbers where
hydrodynamic diffusion is expected to dominate. However, the present analysis is
asymptotically valid for the case where the Péclet number for the large spheres is large
but that for the small spheres is small, i.e. Pe = Ua1/D � 1 and Pe2 = Ua2/D � 1.
In addition, it is applicable to dilute arrays, φ2 � 1, with any value of Pe2.

Koch (1996) showed that hydrodynamic diffusion is suppressed near solid bound-
aries to a porous medium. In particular the radial component of the diffusivity
depends on the time integral of the radial velocity correlation function of a tracer
molecule being convected around the circumference of the large sphere and can be
estimated as v′2r τ where τ = κ/vθ is the correlation time or the time for which the
tracer experiences the velocity disturbance of one of the small spheres. The radial
velocity disturbance caused by a small sphere, v′r′ , is proportional to Ua2Y

2/κ3 and
the tangential velocity sweeping the tracer around the large sphere, vθ , is propor-
tional to UY /α as y → 0. As a result the hydrodynamic diffusion in the boundary
layer Y = O(δ) is O(Ua2

2δ
3α/κ5) or O(Da2

2/κ
2). In a dilute array the hydrodynamic

diffusivity is thus O(φ2) smaller than the molecular diffusivity in the mass-transfer
boundary layer. When φ2 = O(1), hydrodynamic diffusion and molecular diffusion
have the same order of magnitude and the theory provides a qualitatively (but not
quantitatively) accurate description of the boundary-layer dispersion.

3. Theory for highly permeable media k � a1

In this section, we will consider a dilute, highly permeable fixed bed, in which
a1/a2 = O(1), and φ = φ1 + φ2 � 1. Each species will then make a significant
contribution to the effective diffusivity. Because of the long range of the velocity
disturbances in a dilute bed, multiparticle reflections are more important here than
for more moderate permeabilities. Thus, we will retain higher-order terms in the
expansion (6) for the effective diffusivity. In a highly permeable medium, κ� a1, the
largest contribution to the hydrodynamic diffusivity comes from large O(κ) radial
distances from the test particle. At these large distances, the velocity disturbance
caused by the particle can be approximated using the point-particle approximation.
For an array of randomly positioned point particles, the expansion for the effective
diffusivity can be written as

D∗ = D∗1 + D∗2 + D∗11 + D∗12 + D∗22, (32)

where

−D∗i · ∇〈c〉 = niκ
4

∫
dxA〈v′〉1(x|xA, i)〈c′〉1(x|xA, i), (33)
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−D∗ij · ∇〈c〉 = ninjκ
7

∫
dxAdxB〈v′′〉2(x|xA, i; xB, j)〈c′′〉2(x|xA, i; xB, j); (34)

〈 〉1(x|xA, i) is the conditional average of a property at x when a particle of species i
is located at xA, 〈 〉2(x|xA, i; xB, j) is the conditional average for a particle of species
i at xA and one of species j at xB , v′′ = v − 〈v〉 − 〈v′〉1(x|xA, i) − 〈v′〉1(x|xB, j), c′′ =
c−〈c〉− 〈c′〉1(x|xA, i)−〈c′〉1(x|xB, j), and all positions have been non-dimensionalized
by κ. With O(φ) relative errors, we can approximate v by u.

The conditional-average velocity disturbance caused by a point particle can be ob-
tained from the general expression (15) for the velocity field by non-dimensionalizing
r with κ and taking the limit ai � κ. Retaining terms up to order (ai/κ)2, we obtain

〈u′〉1(r|0, i) = −6π

(
ai

κ
+
a2
i

κ2

)
U · J(r), (35)

J =
I

4πr3
[(1 + r + r2)e−r − 1] +

rr

4πr5
[3− (3 + 3r + r2)e−r], (36)

which corresponds to the velocity field produced by a point force of strength (in
dimensional variables) 6πµa1U(1 + a1/κ) in a Brinkman medium.

The conditionally averaged concentration field can be determined from (9). The
term 〈u′c′〉 in the unconditionally averaged mass conservation equation has been
shown to result in the diffusive flux −D∗ · ∇〈c〉, cf. (4) and (6). We will adopt the
self-consistent approximation that 〈u′′c′′〉1 − 〈u′c′〉 in the conditional-average mass
conservation equation is equal to −D∗ · ∇〈c′〉1. Neglecting molecular diffusion, consid-
ering the steady-state concentration disturbance caused by the particle, and scaling
positions with κ, (9) becomes

∂〈c′〉1
∂z

= −〈u′〉1 · ∇〈c〉 − 〈u′〉1 · ∇〈c′〉1 +
1

κ
∇ · [D∗ · ∇〈c′〉1]. (37)

The fluid velocity disturbance 〈u′〉1 produced by the particles is small, O(Uai/κ), and
the effective diffusivity is small, O(Uai) so that the last two terms on the right-hand
side of (37) are O(ai/κ) smaller than the bulk convection term on the right-hand side.
Thus, we can expand the concentration field

〈c′〉1 = c0 + c1 + . . . , (38)

where
∂c0

∂z
= −〈u′〉1 · ∇〈c〉, (39)

c1 = cD + cN, (40)

and cN and cD are the first corrections to the concentration field produced by the
nonlinear convection term and by the sampling of the concentration field due to the
effective diffusivity. These are given by

∂cN

∂z
= −〈u′〉1 · ∇c0, (41)

∂cD

∂z
=

1

κ
∇ · [D∗ · ∇c0]. (42)

The one-particle contribution to the diffusivity D∗i can be expressed as a sum of
contributions:

D∗i = D∗i,0 + D∗i,N + D∗i,D + . . . (43)

obtained by inserting c0, cN , cD , etc, into (33).
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The leading-order contribution D∗i,0 is identical to that calculated by Koch & Brady
(1985). The calculation is done most easily by integrating over z by parts and then
taking the Fourier transform in the plane perpendicular to the mean velocity. The
result is

D∗i,0 = 27
8
Uaiφi

(
κ2

a2
i

+
2κ

ai

)
ezez. (44)

To leading order in small ai/κ (or equivalently small φ), we can superimpose the
velocity disturbances caused by the two types of particles (44) as calculated by Koch
& Brady (1985). However, these contributions are coupled through the permeability,
which depends on the concentrations and radii of both species.

To determine the first influence of the nonlinear convection term on the effective
diffusivity, we require a four-dimensional numerical integration. One integral over z
is required to determine c0 from (39) followed by a second integral over z to find cN
from (41). Exploiting axisymmetry, the volume integral in (33) can be reduced to a
two-dimensional numerical integration. The result is

D∗i,N = 3.59 Uaiφi
κ

ai
ezez. (45)

The sum of the terms (44) and (45) provides the improved asymptote for high
permeability that is plotted as the dashed line in figure 2.

The fore–aft symmetry of the flow around a single particle in an isotropic Brinkman
medium implies that the hydrodynamic diffusivity will be purely longitudinal as
obtained above in (44) and (45). Contributions to the transverse diffusivity will arise if
we consider multiparticle effects on the concentration field, in particular, the sampling
of the space surrounding the test particle at position xA due to the hydrodynamic
diffusion caused by all the other particles (leading to D∗i,D) and multiparticle velocity
disturbances (leading to D∗ij).

The contribution of diffusive sampling to the hydrodynamic diffusivity can be
derived most easily by using Fourier transforms. Solving (39) and (42) in Fourier
space, the concentration disturbance caused by diffusive sampling is

ĉD =
6πaiU · Ĵ(ξ) · ∇〈c〉(2π)2ξ · D∗ · ξ

κ(2πξz)2U2
(46)

where ξ is the Fourier transform variable corresponding to x− xA and

Ĵ(ξ) =
I − ξξ/ξ2

(2πξ)2 + 1
(47)

is the Fourier transform of the Green’s function for Brinkman’s equation. This may
be derived most easily by consider Brinkman’s equation (12) and (10) with a point-
particle forcing F δ(r) on the right-hand side, scaling the position variable, Fourier
transforming, solving for 〈û′〉1, and using (35).

Substituting (46) and (35) into (33) and using the product theorem we obtain an
expression for the effects of diffusive sampling on the effective diffusivity:

D∗i,0 = niκ(6πai)
2

∫
dξ
ez · Ĵ(ξ)ez · Ĵ(−ξ)ξ · D∗ · ξ

(2πξz)2
(48)

Using the leading-order estimate for the effective diffusivity

D∗ ≈ D∗10 + D∗20 ≈ ezez 27
8
Uκ2

(
φ1

a1

+
φ2

a2

)
(49)



Hydrodynamic and boundary-layer dispersion in porous media 373

in the integral on the right-hand side of (48), we obtain

D∗i,D =
243π2

2
niUκ

3a2
i

(
φ1

a1

+
φ2

a2

)∫
dξez · Ĵ(ξ)ez · Ĵ(−ξ) (50)

or

D∗i,D =

(
243

40
ezez +

243

320
(I − ezez)

)
φiU

κ3

ai

(
φ1

a1

+
φ2

a2

)
, (51)

Koch & Brady (1985) studied the effects of diffusive sampling on the transverse
effective diffusivity in monodisperse fixed bed. They obtained an O(Uaφ1/2) transverse
diffusivity consistent with (51). However, an algebraic error in Koch & Brady’s analysis
led to an incorrect numerical coefficient in their equation (4.11).

Next, we consider the contribution of two-particle velocity correlations to the effec-
tive diffusivity, i.e, D∗ij defined by (34). The velocity disturbance produced by a particle
is weak, O(Uai/κ) at O(κ) separations. As a result, each successive, higher-order
hydrodynamic reflection between two particles is O(ai/κ) smaller than the preceding
one. The leading-order two-particle velocity disturbance involves first reflections. The
fluid velocity disturbance 6π(ai/κ)U · J(xB − xA) produced by particle A modifies the
force on particle B and the disturbance 6π(aj/κ)U ·J(xA−xB) produced by B modifies
the force on A. These modified forces produce the velocity field

〈u′′〉2 = (6π)2 aiaj

κ2
[U · J(xB − xA) · J(x− xB) +U · J(xA − xB) · J(x− xA)]. (52)

An equation for the two-particle concentration disturbance 〈c′′〉2 similar to (9) for the
one-particle disturbance can be derived by taking the average of (3) with two particle
positions held fixed and subtracting the bulk average mass conservation equation (4)
and equations of the form (9) for the disturbances due to each of the two particles.
To leading order in small volume fraction, the resulting equation reduces to

U · ∇〈c′′〉2 ≈ −〈u′′〉2 · ∇〈c〉. (53)

Introducing inverse Fourier transformer for the Green’s functions in (52), solving (53)
in Fourier space and inserting the resulting expressions into (34) gives

D∗ij = (6π)4ninjκ
2a2
i a

2
j UB , (54)

where

Bij =

∫
dξ
δk3δm3

2πiξ3

Ĵ li(ξ)Ĵnj(ξ)Aklmn (55)

and

Aklmn =

∫
dξ′Ĵkl(ξ′)Ĵmn(ξ′). (56)

In (55) and (56), we have adopted index notation and δk3 is the unit vector parallel
to the mean velocity. Performing the integrals in (56) gives

Aklmn =
1

8π
( 2

5
δklδmn + 1

15
(δmkδln + δknδlm)). (57)

Substituting (57) into (55), interpreting 1/ξ3 as a generalized function and performing
the integration over ξ, we obtain

B =
1

128π2
(ezez + 1

15
I ). (58)
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Thus, the effective diffusivity due to two-particle interactions is

D∗ij =

(
243

40
ezez +

243

640
(I − ezez)

)
φiφjU

κ3

aiaj
. (59)

Because the streamlines for flow past two interacting particles in a Brinkman
medium do not have fore–aft symmetry, D∗ij includes a contribution to the transverse
as well as the longitudinal diffusivity. The effects of two-particle interactions on the
transverse stretch of a polymer molecule in a fixed bed of spheres has been analysed
by Shaqfeh & Koch (1992).

To obtain results for the diffusivity in terms of the particle volume fractions and
radii alone, we must relate the permeability to φ1, φ2, a1, and a2. The body force that
the particles exert on the fluid is

−µU/κ2 = n1F1 + n2F2. (60)

Here, F1 is the average force that each particle exerts, which can be obtained from a
solution for flow past a sphere in a Brinkman medium:

Fi = −6πµUai
(
1 + ai/κ

)
. (61)

Gathering together the various contributions (44), (45), (51), and (59) to the hy-
drodynamic diffusivity along with the boundary-layer diffusivity (32), the longitudinal
and transverse effective diffusivities in a dilute bidisperse fixed bed are given by

D∗L = Ua1

(
3

4

(
1 +

f

λ

)(
1 +

f

λ2

)−1

− 9φ
1/2
1

20(2)1/2

(
1 +

f

λ

)2(
1 +

f

λ2

)−3/2

+4.87φ
1/2
1 (1 + f)

(
1 +

f

λ2

)−1/2

+
π2

6
φ1[ ln(Pe) + fλ ln (λPe)]

+O
(
φ1[ln(1/φ1)]

2
))

, (62)

D∗T = Ua1

(
27

160
√

2
φ

1/2
1

(
1 +

f

λ

)2(
1 +

f

λ2

)−3/2

+ O(φ1)

)
, (63)

where f = φ2/φ1 and λ = a2/a1.
For a monodisperse fixed bed (62) becomes

D∗L = Ua1

(
3
4

+ 4.55φ
1/2
1 + 1

6
π2φln(Pe) + O(φ1[ln(1/φ1)]

2)
)
. (64)

The first and third terms in the brackets on the right-hand side of (64) are the hy-
drodynamic and boundary-layer dispersion contributions derived by Koch & Brady
(1985), while the second term represents the first correction to Koch & Brady’s hydro-
dynamic diffusion result due to effects of diffusive sampling, two-particle interactions,
the nonlinear convective term in the mass conservation equation, and corrections to
the particle force and permeability. The next, O(φ1[ln(1/φ1)]

2) correction to D∗L comes
from the second perturbation of the concentration field by the nonlinear convective
term in (37). The transverse diffusivity in a monodisperse fixed bed obtained by setting
f = 0 in (63) is

D∗T = Ua1

(
27

160
√

2
φ

1/2
1 + O(φ1)

)
. (65)

This transverse dispersion coefficient contains contributions due to both diffusive
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sampling as noted by Koch & Brady (1985) and two-particle interactions as suggested
(in a slightly different context) by Shaqfeh & Koch (1992).

4. Experimental study of dispersion in a bidisperse packed bed
The approximations used in the foregoing analysis are asymptotically valid in the

dilute limit, φ1 � 1 and φ2 � 1. When φ2 ∼ O(1), Brinkman’s equations of motion
will no longer describe the detailed conditional-average velocity profile around a
test (species 1) sphere (Durlofsky & Brady 1987). However, based on the success
of theories using Brinkman’s equation to predict average properties of concentrated
fixed beds (Koch & Brady 1985; Sangani & Behl 1989; Koch & Ladd 1997), we might
expect the qualitative predictions of the theory to apply to packed beds with φ1 � 1
but φ2 ∼ O(1).

To explore the behaviour of such packed beds, an experimental study of the
dispersion resulting from flow through a bidisperse bed consisting of Fontainebleau
sand grains (a2 = 102.5 µm) and glass spheres (a1=5 mm) was performed. The bed
was contained in a vertical tube of 25 cm diameter and 50 cm height.

When producing a bidisperse packed bed, care must be taken to ensure that
there are no macroscopic inhomogeneities due to segregation of the two species or
variations in the packing density. The variations in permeability resulting from such
inhomogeneities could lead to much higher effective diffusivities than would occur in
a statistically homogeneous medium. To ensure a homogeneous medium, the bed was
constructed by successively depositing layers of 2 cm thickness and compacting the
medium with a cylindrical piston until the porosity reached its minimum value. Media
were constructed with φ1 = 0 and 0.15. In each case, the porosity of the medium
consisting of the small spheres, i.e. (1− φ1 − φ2)/(1− φ1), was 0.37.

The fluid phase for the dispersion experiments consisted of an aqueous solution of
CaNO3. To ensure that the bed was completely saturated with water, the bed was
purged with CO2, which is soluble in both air and water, before introducing the water
flow. Experiments were performed at small velocities so that the Reynolds number was
in the range Re = Ua2/ν = 0.079–0.79 where ν is the kinematic viscosity of the water.
The relationship between head loss and volumetric flow rate for all three media was
linear, indicating a viscous-dominated flow. The permeability of the monodisperse bed,
k2 = 1.91×10−7cm2, was comparable with the value, k2 = 2.98×10−7cm2, predicted by
the Carman–Kozeny correlation for spherical particles. The spatial uniformity of the
mean flow profile produced by the fluid injection system was verified in a prototype
bed containing an array of thermocouples. The temperature of the fluid was changed
abruptly and the thermocouples indicated that the temperature profile within the bed
was nearly independent of position in the plane perpendicular to the tube axis.

To measure the dispersion, a step change in the inlet concentration of CaNO3 from
1.0 mg l−1 to 1.5 mg l−1 was introduced into the bottom of the bed. The conductivity
and temperature of the solution as a function of time were monitored at the inlet and
outlet. The concentration of the tracer could be determined from the conductivity
after correcting for any changes resulting from inadvertent temperature fluctuations.
The concentration profiles were fitted using a solution of the convection–diffusion
equation. This fit was very good in both the bidisperse and monodisperse beds,
indicating that the bed was sufficiently long to yield the long-time diffusive behaviour.
More details of the experimental procedure are given by Moutsopoulos (1993).

The resulting experimental measurements of the effective diffusivities are plotted
as a function of Péclet number, Pe1 = Wa1/D in figure 4. The circles are values
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Figure 4. Experimental measurements for the logitudinal effective diffusivity non-dimensional-
ized by the molecular diffusion D are plotted as a function of the Péclet number, Pe1 = Wa1/D.
The squares are experimental results for φ1 = 0.15 and a1/a2 = 48 and the line is the corresponding
theoretical prediction. For reference the experimental measurements of the effective diffusivity in a
monodisperse bed consisting of the small spheres are indicated by the circles.

for a monodisperse bed of small spheres (with radii a2) and the squares are the
measurements for a bidisperse medium with φ1 = 0.15. The inclusion of large spheres
in the medium increases the effective diffusivity substantially above the values obtained
in a monodisperse bed even at this relatively modest value of φ1.

To predict the effective diffusivities arising in the bidisperse bed, we will assume
that the dispersion resulting from the small and large spheres can be superimposed,
D∗ = D∗1 + D∗2. As noted above, this superposition strictly holds when φ1(κ/a1)

3 � 1.
The dispersion caused by the small spheres is taken to be D∗2 = (1 − φ1)D

∗
M , where

D∗M is the effective diffusivity in a monodisperse bed. A best fit to the data for the
monodisperse beds yields D∗M = 1.03(Wa2/D)1.145. The dispersion D∗1 caused by the
large spheres is obtained using the theory derived in § 2, i.e. equations (22) and (30).
The permeability k2 of the medium of small spheres is obtained from the Carman–
Kozeny correlation. The resulting theoretical predictions are shown as the solid line
in figure 4. The theory and experiment are in good agreement in terms of both the
magnitude of the enhancement of dispersion and its dependence on Péclet number.
The theory indicates that the enhancement of dispersion due to the large spheres is
nearly entirely a result of hydrodynamic dispersion with very little boundary-layer
dispersion as one might expect for a medium with such a large size ratio, a1/a2 = 48.

The only previous experimental study of dispersion in an unconsolidated bidisperse
packed bed in the literature is that of Lemaitre et al. (1986). These authors considered
particles with a size ratio, a1/a2 = 10. The main goal of their study was to observe the
very large enhancement of dispersion that they argued would occur when the large
spheres were sufficiently concentrated to create a percolating network of preferential
paths for the fluid flow. Experiments were also performed at lower concentrations φ1 =
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0.15 and 0.214. However, the dispersion measured for these cases was approximately
eight times higher than our theoretical predictions. In view of the good comparison
between our theory and the present experiments, we believe that this large dispersion
may have resulted from bed inhomogeneities. This hypothesis is supported by the
non-Fickian nature of the concentration profiles measured by Lemaitre et al. As noted
above, special precautions are necessary to produce a homogeneous bidisperse bed.
Hulin et al. (1988) and Guyon, Oger & Plona (1987) have also noted the difficulty of
producing a homogeneous bidisperse porous medium and have suggested procedures
for constructing homogeneous unconsolidated and consolidated media. Hulin et
al. (1988) obtained experimental measurements of the hydrodynamic diffusivity in
consolidated porous media formed by sintering bidisperse packed beds with a particle
radius ratio of 3.4. These authors showed that an empirical correlation relating the
hydrodynamic diffusivity to the prermeability and conductivity of the medium and
the loss of porosity during sintering provided a good fit to their data and to previous
data on consolidated media formed from monodisperse packings. However, it is clear
that such a correlation could not account for the present experimental observations.
For the large radius ratio (48.8) used in our experiments, the effect of the volume
fraction of the large spheres on the permeability, porosity and conductivity is small
whereas its effect on the hydrodynamic diffusion is substantial.

5. Conclusions
The effective diffusivity due to flow through a bidisperse porous medium has been

analysed. The case in which the particles of species 1 are much larger than those of
species 2, a1/a2 � 1, is treated in § 2. The permeability of the medium is controlled
primarily by the smaller particles, whereas the hydrodynamic diffusion results from the
larger particles. The mechanical and boundary-layer dispersion mechanisms identified
by Koch & Brady (1985) for a monodisperse fixed bed are found to exist in a bidisperse
bed as well. The bidisperse medium can exhibit arbitrary values of the ratio κ/a1

where κ is the Brinkman screening length or square root of the permeability. Thus,
it is necessary to relax Koch & Brady’s assumption that most of the hydrodynamic
dispersion would occur at large distances from the sphere where the streamlines are
nearly straight and instead integrate over the curved streamlines for Brinkman flow
past a finite-radius particle. While dispersion is independent of molecular diffusion
throughout most of the medium, it is necessary to account for molecular diffusion in a
thin mass-transfer boundary layer near each particle’s surface. The resulting boundary-
layer dispersion constitutes an important contribution to the effective diffusivity when
κ = O(a1). However, the size of the boundary-layer dispersion contribution diminishes
as κ/a1 → 0. Thus, the results of Moutsopoulos & Bories (1993) for dispersion in a
Darcy medium where no boundary layer exists are recovered in this limit.

In § 3, we considered a dilute fixed bed in which κ � a1. In this section, the ratio
of the particle radii was allowed to be O(1) so that each species made a significant
contribution to both the permeability and the dispersion. Koch & Brady (1985)
showed that the leading-order longitudinal hydrodynamic diffusivity is (3/4)Ua1 in
a dilute monodisperse bed. The corresponding result for a bidisperse medium is
(3/4)Ua1(1 + f/λ)(1 + f/λ2)−1, where f = φ2/φ1 and λ = a2/a1. The longitudi-
nal and transverse hydrodynamic diffusivities were computed including terms up to

O(Ua1φ
1/2
1 ). Corrections of this order arose due to changes in the drag and perme-

ability resulting from particle interactions, the sampling of the space surrounding the
test particle due to the effective diffusivity caused by the other particles, the nonlinear



378 K. N. Moutsopoulos and D. L. Koch

convective term in the mass conservation equation, and the dispersion resulting from
fluid velocity disturbances associated with two-particle reflections. In the case of a
monodisperse fixed bed, our analysis provides an extension of Koch & Brady’s (1985)
analysis to include one higher-order term in the expansion for small volume fraction.

Experimental results for the effective diffusivity in a bidisperse bed were presented in
§ 4. The experiments confirm the theoretical prediction that the dispersion grows upon
the inclusion of large spheres in a packed bed of small spheres. Good quantitative
agreement between theoretical predictions and experimental measurements of this
added dispersion is obtained when the flow around the large spheres is modelled
using Brinkman’s equation with a permeability obtained from the Carman–Kozeny
equation.
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